The post-fermentation phase of still wine plays a crucial role in determining wine quality. This study evaluates the impact of key winery practices (including nitrogen supplementation during fermentation, cooling methods, and SO₂ addition) on yeast lees viability and acetaldehyde production during the post-fermentation stage. Two commercial Saccharomyces cerevisiae strains with distinct technological characteristics were assessed under a real vinification protocol involving a decanting rest, two rackings, and bottling. Nitrogen was supplemented either as ammonium alone (NH₄+) or as a mix of ammonium and amino acids (MIX). In order evaluate the effect of the treatments independently to the yeast strain, statistical mixed models were applied. Results showed that generally MIX supplementation significantly enhanced yeast viability without increasing acetaldehyde levels. Fast cooling and absence of SO₂ addition after fermentation were associated with higher viable cell counts and lower acetaldehyde concentrations. Although SO₂ addition consistently increased acetaldehyde, the timing of its application did not significantly affect its final concentration. These findings suggest that optimizing nitrogen nutrition and post-fermentation cooling strategies can improve wine quality by modulating viable cells concentration and acetaldehyde production. Moreover, the observed persistence of viable yeast cells highlights the need for further studies on their role in oxidation protection and wine maturation, providing a foundation for refined fermentation management practices.
Nitrogen supplementation during wine fermentation, cooling rate and SO₂ addition timing influence yeast viability and acetaldehyde production in the post-fermentation process
	
	
	
		
		
		
		
		
	
	
	
	
	
	
	
	
		
		
		
		
		
			
			
			
		
		
		
		
			
			
				
				
					
					
					
					
						
							
						
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
						
							
							
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
						
							
							
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
							
						
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
							
						
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
							
						
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
							
						
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
							
						
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
							
						
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
		
		
		
	
Sica, Jacopo;Vincenzi, Simone;Sartori, Cristina;Carlot, Milena;Nadai, Chiara
;Giacomini, Alessio;Corich, Viviana
	
		
		
	
			2025
Abstract
The post-fermentation phase of still wine plays a crucial role in determining wine quality. This study evaluates the impact of key winery practices (including nitrogen supplementation during fermentation, cooling methods, and SO₂ addition) on yeast lees viability and acetaldehyde production during the post-fermentation stage. Two commercial Saccharomyces cerevisiae strains with distinct technological characteristics were assessed under a real vinification protocol involving a decanting rest, two rackings, and bottling. Nitrogen was supplemented either as ammonium alone (NH₄+) or as a mix of ammonium and amino acids (MIX). In order evaluate the effect of the treatments independently to the yeast strain, statistical mixed models were applied. Results showed that generally MIX supplementation significantly enhanced yeast viability without increasing acetaldehyde levels. Fast cooling and absence of SO₂ addition after fermentation were associated with higher viable cell counts and lower acetaldehyde concentrations. Although SO₂ addition consistently increased acetaldehyde, the timing of its application did not significantly affect its final concentration. These findings suggest that optimizing nitrogen nutrition and post-fermentation cooling strategies can improve wine quality by modulating viable cells concentration and acetaldehyde production. Moreover, the observed persistence of viable yeast cells highlights the need for further studies on their role in oxidation protection and wine maturation, providing a foundation for refined fermentation management practices.| File | Dimensione | Formato | |
|---|---|---|---|
| 1-s2.0-S0168160525003137-main.pdf accesso aperto 
											Tipologia:
											Published (Publisher's Version of Record)
										 
											Licenza:
											
											
												Creative commons
												
												
													
													
													
												
												
											
										 
										Dimensione
										4.04 MB
									 
										Formato
										Adobe PDF
									 | 4.04 MB | Adobe PDF | Visualizza/Apri | 
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.




