This paper critically investigates the advantages and limitations of the current-transient methods used for the study of the deep levels in GaN-based high-electron mobility transistors (HEMTs), by evaluating how the procedures adopted for measurement and data analysis can influence the results of the investigation. The article is divided in two parts within Part I. 1) We analyze how the choice of the measurement and analysis parameters (such as the voltage levels used to induce the trapping phenomena and monitor the current transients, the duration of the filling pulses, and the method used for the extrapolation of the time constants of the capture/emission processes) can influence the results of the drain current transient investigation and can provide information on the location of the trap levels responsible for current collapse. 2) We present a database of defects described in more than 60 papers on GaN technology, which can be used to extract information on the nature and origin of the trap levels responsible for current collapse in AlGaN/GaN HEMTs. Within Part II, we investigate how self-heating can modify the results of drain current transient measurements on the basis of combined experimental activity and device simulation.

Deep-Level Characterization in GaN HEMTs-Part I: Advantages and Limitations of Drain Current Transient Measurements

BISI, DAVIDE;MENEGHINI, MATTEO;DE SANTI, CARLO;MENEGHESSO, GAUDENZIO;ZANONI, ENRICO
2013

Abstract

This paper critically investigates the advantages and limitations of the current-transient methods used for the study of the deep levels in GaN-based high-electron mobility transistors (HEMTs), by evaluating how the procedures adopted for measurement and data analysis can influence the results of the investigation. The article is divided in two parts within Part I. 1) We analyze how the choice of the measurement and analysis parameters (such as the voltage levels used to induce the trapping phenomena and monitor the current transients, the duration of the filling pulses, and the method used for the extrapolation of the time constants of the capture/emission processes) can influence the results of the drain current transient investigation and can provide information on the location of the trap levels responsible for current collapse. 2) We present a database of defects described in more than 60 papers on GaN technology, which can be used to extract information on the nature and origin of the trap levels responsible for current collapse in AlGaN/GaN HEMTs. Within Part II, we investigate how self-heating can modify the results of drain current transient measurements on the basis of combined experimental activity and device simulation.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2693078
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 354
  • ???jsp.display-item.citation.isi??? 332
  • OpenAlex ND
social impact