We demonstrate the avalanche capability and the existence of breakdown walkout in GaN-on-GaN vertical devices with polarization doping. By means of combined electrical and optical characterization, we demonstrate the following original results: 1) vertical p-n junctions with polarization doping have avalanche capability; 2) stress in avalanche regime induces an increase in breakdown voltage, referred to as breakdown walkout; 3) this process is fully-recoverable, thus being related to a trapping mechanism; 4) temperature-dependent measurements of the breakdown walkout identify CN defects responsible for this process; and 5) capacitance deep level transient spectroscopy (C-DLTS) and deep level optical spectroscopy (DLOS) confirm the presence of residual carbon in the devices under test. A possible model to explain the avalanche walkout is then proposed.
Breakdown Walkout in Polarization-Doped Vertical GaN Diodes
Fabris E.;Meneghesso G.;Zanoni E.;Meneghini M.;De Santi C.;Caria A.;
2019
Abstract
We demonstrate the avalanche capability and the existence of breakdown walkout in GaN-on-GaN vertical devices with polarization doping. By means of combined electrical and optical characterization, we demonstrate the following original results: 1) vertical p-n junctions with polarization doping have avalanche capability; 2) stress in avalanche regime induces an increase in breakdown voltage, referred to as breakdown walkout; 3) this process is fully-recoverable, thus being related to a trapping mechanism; 4) temperature-dependent measurements of the breakdown walkout identify CN defects responsible for this process; and 5) capacitance deep level transient spectroscopy (C-DLTS) and deep level optical spectroscopy (DLOS) confirm the presence of residual carbon in the devices under test. A possible model to explain the avalanche walkout is then proposed.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.