The aim of this work is to study the degradation processes in high power InGaN semiconductor lasers, by means of electrical, optical, spectral and capacitance deep-level transient spectroscopy measurements. The devices were submitted to two different stress experiments, (i) a constant current stress at 1.5 A and 45 °C, and (ii) a temperature/bias step stress at 1 A and increasing temperature. Results demonstrated: (i) two different mechanisms that change the drive voltage, one due to the activation of Mg and one ascribed to the generation of point defects; (ii) a parasitic peak is present in the emission spectra, ascribed to the recombination in a second quantum well (QW); (iii) redistribution of charge takes place during the temperature step stress.

Degradation mechanisms in high power InGaN semiconductor lasers investigated by electrical, optical, spectral and C-DLTS measurements

Piva F.;De Santi C.;Buffolo M.;Meneghesso G.;Zanoni E.;Meneghini M.
2020

Abstract

The aim of this work is to study the degradation processes in high power InGaN semiconductor lasers, by means of electrical, optical, spectral and capacitance deep-level transient spectroscopy measurements. The devices were submitted to two different stress experiments, (i) a constant current stress at 1.5 A and 45 °C, and (ii) a temperature/bias step stress at 1 A and increasing temperature. Results demonstrated: (i) two different mechanisms that change the drive voltage, one due to the activation of Mg and one ascribed to the generation of point defects; (ii) a parasitic peak is present in the emission spectra, ascribed to the recombination in a second quantum well (QW); (iii) redistribution of charge takes place during the temperature step stress.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3365222
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact