The market for UV LEDs is experiencing a rapid growth, also driven by the need for effective and efficient disinfection systems. Before UV LEDs can be widely accepted by the market, they need to demonstrate a high reliability, with lifetimes of several thousands of hours. Several physical processes may limit the reliability of UVB and UVC LEDs, resulting in a loss in efficiency during long term operation.This paper aims at discussing the most relevant processes that can lead to the degradation of UVB and UVC LEDs, with focus on: (i) instability of the electrical properties, which may result in gradual changes in the turn-on voltage of the devices during long-term operation. (ii) The generation of defects within the active region of the devices, with consequent increase in the Shockley- Read-Hall non-radiative recombination rate. Optical spectroscopy is found to be very effective for the identification of deep (midgap) traps during operation of the devices. (iii) trap states near the junction, with consequent impact on trap-assisted-tunneling of the current-voltage characteristics. (iv) the propagation of point defects, especially impurities, and accumulation of charges at heterointerfaces, that can reduce the carrier injection efficiency, thus leading to a decrease in the emitted optical power.

UV LED reliability: degradation mechanisms and challenges

Meneghini, M;Piva, F;De Santi, C;Trivellin, N;Buffolo, M;Roccato, N;Fiorimonte, D;Meneghesso, G;Zanoni, E
2022

Abstract

The market for UV LEDs is experiencing a rapid growth, also driven by the need for effective and efficient disinfection systems. Before UV LEDs can be widely accepted by the market, they need to demonstrate a high reliability, with lifetimes of several thousands of hours. Several physical processes may limit the reliability of UVB and UVC LEDs, resulting in a loss in efficiency during long term operation.This paper aims at discussing the most relevant processes that can lead to the degradation of UVB and UVC LEDs, with focus on: (i) instability of the electrical properties, which may result in gradual changes in the turn-on voltage of the devices during long-term operation. (ii) The generation of defects within the active region of the devices, with consequent increase in the Shockley- Read-Hall non-radiative recombination rate. Optical spectroscopy is found to be very effective for the identification of deep (midgap) traps during operation of the devices. (iii) trap states near the junction, with consequent impact on trap-assisted-tunneling of the current-voltage characteristics. (iv) the propagation of point defects, especially impurities, and accumulation of charges at heterointerfaces, that can reduce the carrier injection efficiency, thus leading to a decrease in the emitted optical power.
2022
Proceedings Volume 12001, Gallium Nitride Materials and Devices XVII
9781510648739
9781510648746
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3455440
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 2
social impact